A PubMed search of the medical literature shows that the first mention of “triple-negative” breast cancer was in October 2006; since then, the term has appeared in more than 600 publications. This increase reflects the growing recognition of the importance of triple-negative breast cancer (see the Glossary for this and other key terms) by oncologists, pathologists, and geneticists, as well as by the approximately 12 to 17% of women with breast cancer who have triple-negative breast cancer. As a group, patients with triple-negative tumors have a relatively poor outcome and cannot be treated with endocrine therapy or therapies targeted to human epidermal growth factor receptor type 2 (HER2).

A close cousin of triple-negative breast cancer is basal-like breast cancer (synonymous terms include “basal-type,” “basal-epithelial phenotype,” “basal breast cancer,” and “basaloid breast cancer”). This molecular subtype of breast cancer is characterized by a gene-expression profile that is similar to that of the basal–myoepithelial layer of the normal breast. Immunohistochemical markers have been used as a surrogate for this profile. The multiplicity of names reflects an underlying uncertainty as to the true nature of this entity.

Triple-Negative versus Basal-Like Breast Cancers

Triple-negative breast cancers are defined as tumors that lack expression of estrogen receptor (ER), progesterone receptor (PR), and HER2. Basal-like breast cancers constitute one of five intrinsic subgroups of breast cancer, the existence of which was revealed by microarray-based expression profiling studies. This subgroup is characterized by an absence or low levels of expression of ER, an absence of HER2 overexpression, and expression of genes usually found in basal or myoepithelial cells of the normal breast (Fig. 1). Many cancers meet the definitions of both triple-negative breast cancers and basal-like breast cancers.

Although appreciation of the significance of basal-like breast cancers predated gene-expression studies by some years, this term did not come into widespread use until after the publication of these studies. There is still no internationally accepted definition for these tumors. Because a majority of basal-like cancers are also triple-negative breast cancers and the majority of triple-negative breast cancers (approximately 80%) are also basal-like breast cancers, it has been claimed that the triple-negative and basal-like phenotypes are effectively synonymous but clinical, microarray, and immunohistochemical data show that this is not the case (Table 1).

Triple-negative breast cancers encompass other molecular subtypes of breast cancer. These include the so-called claudin-low tumors, which are reported to be enriched with cells that have properties similar to those of stem cells and to have
features of epithelial-to-mesenchymal transition; the interferon-rich subgroup, which encompasses tumors with a considerably better prognosis than that associated with other triple-negative breast cancers; and the normal-breast–like subgroup, which may be an artifact (i.e., it may comprise samples enriched with a disproportionately high content of stromal and normal cells). Similarly, 18 to 40% of basal-like cancers do not have a triple-negative phenotype on immunohistochemical analysis. Up to 20% of basal-like cancers express ER or overexpress...
HER2. At the genetic level, triple-negative and basal-like cancers are remarkably heterogeneous. Amplification of numerous genetic regions has been documented, but the prevalence of each of these amplified regions is low.10

Triple-negative and basal-like tumors account for about 15\% of all invasive breast cancers, and they usually have a high histologic grade.3,11 Both triple-negative12 and basal-like13 breast cancer occur more frequently in young black and Hispanic women than in young women of other racial or ethnic groups. \textit{BRCA1} is an important breast-cancer susceptibility gene; more than 75\% of tumors arising in women carrying a mutation in this gene have a triple-negative phenotype, a basal-like phenotype, or both.3,11

As compared with women without cancer, women in whom basal-like breast cancer devel-
The question of whether there is a specific, identifiable cell in the normal breast from which basal-like breast cancers arise is controversial. Basal-like cancer cells possess some phenotypic characteristics that are consistent with those of breast stem cells. Despite these similarities, there is strong evidence that basal-like breast cancers arise from the luminal progenitor compartment. Consequently, one possible implication of the term “basal-like breast cancer” — the idea that these cancers arise from normal basal breast cells or basal-like stem cells — appears to be incorrect. Proponents of the “breast cancer stem cell hypothesis” argue that cancer stem cells are ultimately responsible for the maintenance of a population of malignant cells with metastatic potential. Cancer cells from triple-negative and basal-like breast cancers display a profile of cell-surface markers that is similar to that of breast-cancer stem cells, characterized by the phenotype CD44+CD24− (in which CD44 is expressed at high levels but levels of CD24 are low or undetectable) and the expression of aldehyde dehydrogenase 1 (ALDH1A1). Although the population of cells expressing these markers is enriched with cells that have tumorigenic potential, not every cancer cell with this profile has the properties of cancer stem cells.

Cancer stem cells do not necessarily arise from tissue stem cells themselves. They may arise from a differentiated cancer cell that has acquired the property of self-renewal; the phenotypic plasticity of cancer cells is a well-documented phenomenon. Notably, breast-cancer cells that undergo epithelial-to-mesenchymal transition display properties that can be all but indistinguishable from those of breast-cancer stem cells. (This transition from epithelial to mesenchymal characteristics is a natural process that occurs during embryogenesis, wound healing, and tissue regeneration. It can arguably be regarded as a key step in conferring metastatic potential to carcinomas). Basal-like breast cancers often display gene-expression patterns that

with a core basal phenotype may have a worse outcome than breast cancers that are negative for all five of these markers, this term could have some clinical value.

Cellular Origin of Basal-Like Breast Cancers

The New England Journal of Medicine

The question of whether there is a specific, identifiable cell in the normal breast from which basal-like breast cancers arise is controversial. Basal-like cancer cells possess some phenotypic characteristics that are consistent with those of breast stem cells. Despite these similarities, there is strong evidence that basal-like breast cancers arise from the luminal progenitor compartment. Consequently, one possible implication of the term “basal-like breast cancer” — the idea that these cancers arise from normal basal breast cells or basal-like stem cells — appears to be incorrect. Proponents of the “breast cancer stem cell hypothesis” argue that cancer stem cells are ultimately responsible for the maintenance of a population of malignant cells with metastatic potential. Cancer cells from triple-negative and basal-like breast cancers display a profile of cell-surface markers that is similar to that of breast-cancer stem cells, characterized by the phenotype CD44+CD24− (in which CD44 is expressed at high levels but levels of CD24 are low or undetectable) and the expression of aldehyde dehydrogenase 1 (ALDH1A1). Although the population of cells expressing these markers is enriched with cells that have tumorigenic potential, not every cancer cell with this profile has the properties of cancer stem cells.

Cancer stem cells do not necessarily arise from tissue stem cells themselves. They may arise from a differentiated cancer cell that has acquired the property of self-renewal; the phenotypic plasticity of cancer cells is a well-documented phenomenon. Notably, breast-cancer cells that undergo epithelial-to-mesenchymal transition display properties that can be all but indistinguishable from those of breast-cancer stem cells. (This transition from epithelial to mesenchymal characteristics is a natural process that occurs during embryogenesis, wound healing, and tissue regeneration. It can arguably be regarded as a key step in conferring metastatic potential to carcinomas). Basal-like breast cancers often display gene-expression patterns that
Table 1. Key Features of Triple-Negative, Basal-like, and BRCA1-Related Breast Cancers as Compared with All Other Breast-Cancer Subtypes.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Triple-Negative†</th>
<th>Basal-like‡</th>
<th>BRCA1-Related§</th>
<th>All Other Subtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphologic features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histologic type</td>
<td>Ductal carcinoma of no special type is most common; special types also seen</td>
<td>Ductal carcinoma of no special type is most common; special types also seen</td>
<td>Ductal carcinoma of no special type is most common</td>
<td>Variable</td>
</tr>
<tr>
<td>Histologic grade</td>
<td>Mostly grade 3, some grade 2</td>
<td>Mostly grade 3</td>
<td>Mostly grade 3</td>
<td>Variable</td>
</tr>
<tr>
<td>Medullary or atypical medullary</td>
<td>Occasional</td>
<td>Occasional</td>
<td>Found in one-eighth of cases</td>
<td>Very rare</td>
</tr>
<tr>
<td>Metaplastic elements</td>
<td>Occasional</td>
<td>Occasional</td>
<td>Reported but rare</td>
<td>Very rare</td>
</tr>
<tr>
<td>Immunohistochemical expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrogen receptor</td>
<td>Negative (by definition)</td>
<td>Usually negative</td>
<td>Usually negative</td>
<td>Usually positive</td>
</tr>
<tr>
<td>Progesterone receptor</td>
<td>Negative (by definition)</td>
<td>Almost always negative</td>
<td>Usually negative</td>
<td>Usually positive</td>
</tr>
<tr>
<td>HER2</td>
<td>Negative (by definition)</td>
<td>Usually negative</td>
<td>Usually negative</td>
<td>Usually negative</td>
</tr>
<tr>
<td>EGFR</td>
<td>Often positive</td>
<td>Usually positive¶</td>
<td>Usually positive</td>
<td>Usually negative</td>
</tr>
<tr>
<td>CK5 or CK17</td>
<td>Often positive</td>
<td>Almost always positive¶</td>
<td>Usually positive</td>
<td>Usually negative</td>
</tr>
<tr>
<td>Cyclin E</td>
<td>Often positive</td>
<td>Usually positive</td>
<td>Usually positive</td>
<td>Usually positive</td>
</tr>
<tr>
<td>Molecular features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP53 mutations</td>
<td>Sometimes present, often truncating</td>
<td>Usually present, often truncating</td>
<td>Nearly always present, nearly always truncating</td>
<td>Not often present, rarely truncating</td>
</tr>
<tr>
<td>Degree of aneuploidy</td>
<td>Usually high</td>
<td>High</td>
<td>Very high</td>
<td>Variable</td>
</tr>
<tr>
<td>Gene-expression profile</td>
<td>Often basal-like and occasionally claudin-low</td>
<td>Basal-like, by definition</td>
<td>Usually basal-like</td>
<td>Not basal-like, by definition</td>
</tr>
<tr>
<td>Prognosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prognosis in first 5 yr after diagnosis</td>
<td>Intermediate</td>
<td>Generally adverse</td>
<td>Generally adverse</td>
<td>Generally good</td>
</tr>
<tr>
<td>Distant relapse 10 yr after diagnosis</td>
<td>Rare</td>
<td>Very rare</td>
<td>Rare, but high risk of second primary cancers</td>
<td>Highly variable</td>
</tr>
<tr>
<td>Therapeutic options</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormonal therapy</td>
<td>No</td>
<td>No</td>
<td>Usually no</td>
<td>Usually yes</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>No</td>
<td>No</td>
<td>Usually no</td>
<td>Usually no</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>Yes; no clear consensus, but regimens containing doxorubicin or taxane favored</td>
<td>Yes; no consensus on regimen</td>
<td>Yes; DNA-damaging agents are likely to be effective</td>
<td>Usually yes; benefit may be reduced in patients with ER-positive cancers</td>
</tr>
<tr>
<td>Other agents likely to be effective</td>
<td>Antiangiogenic agents, platinum salts, PARP inhibitors</td>
<td>Antiangiogenic agents, platinum salts, PARP inhibitors</td>
<td>PARP inhibitors, antiangiogenic agents, platinum salts</td>
<td>Many types of agents; dependent on tumor profile</td>
</tr>
</tbody>
</table>

* CK denotes cytokeratin, EGFR epidermal growth factor receptor, HER2 human epidermal growth factor receptor type 2, PARP poly(adenosine diphosphate–ribose) polymerase, and TP53 the gene encoding tumor protein 53.
† Cancers are defined as triple-negative on the basis of immunohistochemical test results (absence of staining for estrogen receptor, progesterone receptor, and HER2).
‡ Cancers are defined as basal-like on the basis of gene-expression profiling, although the definition of “basal-like” is controversial, which is one reason why this term has not been accepted in routine clinical use. For example, laboratories use various cytokeratins and cutoff points to define positivity.
§ Cancers are defined as BRCA1-related if a deleterious germline mutation in BRCA1 is present.
¶ To meet the immunohistochemical definition for the core basal phenotype, the tumor must be positive for EGFR or CK5, as well as having a triple-negative status.
are consistent with those of cells undergoing epithelial-to-mesenchymal transition. It is therefore unclear whether all basal-like cancers are enriched with cancer stem cells or have a disproportionately high content of cells undergoing epithelial-to-mesenchymal transition.

MUTANT BRCA1 AND TRIPLE-NEGATIVE OR BASAL-LIKE BREAST CANCERS

There is a link between the BRCA1 pathway and basal-like breast cancers. The great majority of tumors arising in women carrying a germline BRCA1 mutation, in particular those receiving a diagnosis before reaching 50 years of age, have morphologic features very similar to those of non-hereditary basal-like cancers and often display a basal-like phenotype as defined by immunohistochemical studies or expression arrays.

The immunohistochemical similarities between BRCA1 tumors and basal-like breast carcinomas extend beyond the expression of high-molecular-weight (i.e., basal) cytokeratins (e.g., cytokeratins 5, 14, and 17) to genes affecting the cell cycle. Both basal-like breast cancers and tumors arising in carriers of a germline BRCA1 mutation rarely harbor amplifications of the cyclin D1 gene (CCND1), and both express lower levels of p27 and higher levels of S-phase kinase-associated protein 2 (SKP2), cyclin E, fascin, caveolins 1 and 2, osteonectin, and caspase 3 than do nonhereditary breast carcinomas or BRCA2-related tumors. In one study, a common factor seen in both basal-like breast cancer and BRCA1-related breast cancer was a defect in the maintenance of normal chromosome X inactivation, suggesting that chromatin modification could be a key to the similarity between BRCA1-related and nonhereditary basal-like breast cancer. In other studies, a subgroup of basal-like breast cancers with low levels of BRCA1 expression were characterized by high levels of expression of ID4 (inhibitor of DNA binding 4), a BRCA1 silencer (Key features of triple-negative, basal-like, and BRCA1-related breast cancers are outlined in Table 1).

Despite the absence of somatic BRCA1 mutations in breast cancers, the BRCA1 pathway may be dysfunctional in nonhereditary basal-like tumors. Levels of the BRCA1 protein, measured by means of immunohistochemical studies, may be lower in grade 3 tumors that do not express ER or PR and that possess a basal-like phenotype than in other types of breast cancer. This down-regulation could be mediated by epigenetic mechanisms, and indeed, the BRCA1 promoter is methylated in more than half of all medullary and metaplastic breast cancers, relatively rare types of breast cancer. However, high-grade invasive ductal breast cancers have a relatively low prevalence of BRCA1 promoter methylation, regardless of whether they are basal-like cancers. Overall, the role of BRCA1 inactivation in non-hereditary basal-like breast cancer remains uncertain and controversial.

Mice deficient in both Brca1 and tumor-suppressor protein p53 in mammary epithelial cells develop tumors that are both triple-negative and basal-like and are remarkably similar to those occurring in human carriers of the BRCA1 mutation. This finding suggests that BRCA1 plays a permissive role in the transition of undifferentiated breast cells to their more mature counterparts. On the basis of these data and data derived from studies in humans, however, the target cell of this effect seems likely to be a cell that expresses luminal markers or coexpresses luminal and basal markers (i.e., a luminal progenitor).

Clinically, the triple-negative or the basal-like phenotype indicates the possible presence of a germline BRCA1 mutation. However, the additional usefulness of assays that measure the expression of cytokeratins and other “basal-associated” markers in determining BRCA1 mutation status remains unclear, given the substantial overlap between basal-like and triple-negative cancers. As BRCA1 mutation carriers age, ER-positive breast cancers become more common. It is unclear, however, whether this tendency reflects the occurrence of nonhereditary cancers in older carriers of the mutation or is a result of the changing role of BRCA1 in the breast as a woman ages.

NATURAL HISTORY

Triple-negative and basal-like breast cancers tend to be larger than other subtypes of breast cancer and are usually high-grade, invasive ductal carcinomas of no special type. Differences in nodal status are less clear-cut, but a large study has shown that basal-like breast cancers are more likely than other types of breast cancer to be node-negative. Both triple-negative and basal-like breast cancers are characterized...
by an unusually attenuated relationship between the size of the primary tumor and the probability of survival.\(^40\),\(^43\) Their rapid growth and frequent occurrence in young women can make mammographic detection difficult. In a nested case–control study carried out as part of a national mammographic screening program, these cancers were over-represented among women with interval breast cancers.\(^44\) Unlike cancers that are ER-positive, PR-positive, and HER2-negative, however, they may reveal specific features on magnetic resonance imaging, such as rim enhancement and a very high intratumor signal intensity on \(T_2\)-weighted images.\(^45\) Breast cancers with a core basal phenotype, unlike nonbasal triple-negative cancers, may be more likely than ER-positive breast cancers to recur locally.\(^44\) In addition, both triple-negative and basal-like breast cancers are more likely than other types of breast cancer to metastasize to viscera, particularly to the lungs and brain, and are less likely to metastasize to bone (Fig. 2).\(^47\)-\(^49\)

Multiple studies have indicated that triple-negative and basal-like breast cancers, as a group, are associated with an adverse prognosis. HER2-positive breast cancers were also associated with a poor prognosis until targeted antibody therapy with trastuzumab came into use. No such biologic therapy is available for triple-negative or basal-like breast cancer.

The shape of the survival curve for patients with triple-negative or basal-like breast cancer differs from that for patients with other types of breast cancer: there is a sharp decrease in survival during the first 3 to 5 years after diagnosis, but distant relapse after this time is much less common (Fig. 3).\(^15\),\(^16\),\(^40\),\(^49\) After 10 years, relapse is more likely among patients with ER-negative cancers than among patients with ER-negative cancers.\(^56\) Thus, although as a group triple-negative and basal-like breast cancers are biologically aggressive, many are potentially curable, reflecting their heterogeneity.

TREATMENT

Women with triple-negative breast cancer do not benefit from endocrine therapy or trastuzumab. Chemotherapy is currently the mainstay of systemic medical treatment, although patients with triple-negative disease, when considered as a group, have a worse outcome after chemotherapy than patients with breast cancers of other subtypes,\(^49\),\(^50\) a finding that reflects the intrinsically adverse prognosis associated with the disease. Chemotherapy nevertheless improves the outcome to a greater extent when used in patients with triple-negative breast cancer than when used in patients with the much more common ER-positive subtype (at least among those with node-negative disease).\(^41\) There may be a similar relative gain with taxane chemotherapy. Neoadjuvant studies involving the administration of chemotherapy before surgery suggest that this treatment is very effective in the
minority of women with triple-negative cancer who have a complete pathological response and thus an excellent outcome; in contrast, the outcome for the majority who still have residual disease after treatment is relatively poor (Table 2). These observations suggest that there is a subgroup of women with triple-negative disease whose tumors are extremely sensitive to chemotherapy, but there are many women for whom chemotherapy is of uncertain benefit.

Currently, there is no preferred standard form of chemotherapy for triple-negative breast cancer, and treatment should be selected as it is for other cancer subtypes. Retrospective analyses suggest that the addition of docetaxel or paclitaxel to anthracycline-containing adjuvant regimens may be of greater benefit for the treatment of ER-negative and HER2-negative cancers than for the treatment of ER-positive, HER2-negative cancers, which are much more common. A meta-analysis of trials comparing the effects of cyclophosphamide, methotrexate, and fluorouracil with anthracycline-containing regimens suggests that the latter are more effective against triple-negative disease, although confusingly, a retrospective analysis of one trial suggests the opposite for basal-like breast cancers. The use of cisplatin and carboplatin to treat triple-negative breast cancers is currently being assessed in clinical trials, on the basis that dysfunction of BRCA1 and its pathway is associated with a specific DNA-repair defect that sensitizes cells to these agents in animal models. Initial findings suggest that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations and perhaps also in patients with triple-negative cancer. Newer cytotoxic agents, including ixabepilone, have shown early promise in the treatment of triple-negative disease.

The use of targeted agents against triple-negative breast cancer is currently being investigated. The addition of the angiogenesis inhibitor bevacizumab to paclitaxel as first-line treatment for metastatic breast cancer has resulted in at least as much of a benefit with respect to progression-free survival in the women with ER-negative and PR-negative cancers (virtually all of which were also HER2-negative) as it has in the overall study group (hazard ratio, 0.53 and 0.60, respectively), and bevacizumab is now being assessed as an adjuvant therapy against triple-negative disease. Overexpression of EGFR is more common in the treatment of triple-negative disease.

Figure 3. Survival after a Diagnosis of Breast Cancer.
Panel A shows the survival rate in a series of 3744 patients according to immunohistochemical subtype. Among women with ER-positive or PR-positive and HER2-negative tumors, or so-called luminal A cancer (2625 patients), there was a consistent decline in survival over time. Women with ER-positive and HER2-positive tumors, or luminal B cancer (222 patients), had a steeper and more prolonged drop in survival than women with luminal A cancer. Women with ER-negative, PR-negative, and HER2-positive tumors (258 patients) had a uniformly poor survival rate (because these patients did not receive trastuzumab, their survival rate would be inferior to that of any current cohort of patients). The 659 women with triple-negative breast cancer were divided into two groups — those in whom basal markers were expressed (cytokeratin 5 or EGFR, core basal phenotype; 136 patients) and the outcome was poor and those in whom expression of these markers was absent (303 patients) and the 20-year outcome was not different from that seen in patients with luminal A breast cancer. Immunohistochemical subtype was not assigned in 302 patients.) Panel B shows the hazard rates for distant recurrence of triple-negative breast cancer and non–triple-negative breast cancer. Data in Panel A are from Cheang et al., and data in Panel B are from Dent et al.
triple-negative breast cancers than in other subtypes, and use of the monoclonal antibody cetuximab, targeted against EGFR, is being further studied in combination with carboplatin.69 However, triple-negative and basal-like breast cancers often display abnormalities in PTEN (the gene encoding the phosphatase and tensin homologue), which are frequently associated with resistance to anti-EGFR therapies. Currently, the most interesting clinical target in triple-negative breast cancer is the enzyme poly(adenosine diphosphate–ribose) polymerase (PARP), which is involved in base-excision repair after DNA damage. PARP inhibitors have recently shown very encouraging clinical activity in early trials of tumors arising in BRCA mutation carriers61 and in sporadic triple-negative cancers. One of these inhibitors, iniparib (also known as BSI-201), was recently used in a randomized phase 2 trial involving patients with triple-negative cancer (ClinicalTrials.gov number, NCT00540358). When the inhibitor was added to a chemotherapy combination of gemcitabine and carboplatin, there were significant improvements in the rate of tumor regression (48% vs. 16%, P = 0.002), median progression-free survival (6.9 months vs. 3.3 months; hazard ratio, 0.34; P < 0.001), and median overall survival (9.2 months vs. 5.7 months; hazard ratio, 0.35; P < 0.001).62 An updated analysis showed a median overall survival rate of 12.2 months versus 7.2 months (hazard ratio, 0.5; P = 0.005).63 Similarly, the use of an oral PARP inhibitor, olaparib, often after chemotherapy had failed, resulted in tumor regression in up to 41% of patients carrying BRCA mutations, most of whom had triple-negative breast cancer.64 In both instances, these benefits were achieved with minimal toxicity. PARP inhibitors and other targeted agents are now at the forefront of clinical research on the treatment of triple-negative breast cancer.

Table 2. Overall Survival Rate after Neoadjuvant Chemotherapy in Women with Triple-Negative Breast Cancer and Those with Non–Triple-Negative Breast Cancer.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Triple-Negative Breast Cancer (N = 225)</th>
<th>Non–Triple-Negative Breast Cancer (N = 863)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>percent of women</td>
<td>percent of women</td>
<td></td>
</tr>
<tr>
<td>Complete pathological response*</td>
<td>22</td>
<td>11</td>
<td>0.03</td>
</tr>
<tr>
<td>3-Yr overall survival with complete pathological response</td>
<td>94</td>
<td>98</td>
<td>0.24</td>
</tr>
<tr>
<td>3-Yr overall survival after less than complete pathological response</td>
<td>68</td>
<td>88</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* Complete pathological response was determined on the basis of examination of breast tissue removed at the time of definitive surgery. Data are from Liedtke et al.69

CONCLUSIONS

Taken in their entirety, triple-negative and basal-like breast cancers show aggressive clinical behavior, but a subgroup of these cancers is markedly sensitive to chemotherapy and is associated with a good prognosis when treated with conventional chemotherapy regimens. Furthermore, some triple-negative and basal-like cancers may harbor a dysfunctional BRCA1 pathway and thus may be sensitive to agents such as platinum salts and inhibitors of the PARP enzyme that selectively target cells deficient in homologous recombination DNA repair. It seems very likely that neither triple-negative nor basal-like breast cancers are single entities but rather are a collection of different diseases. Hence, studies that address the molecular underpinning of this heterogeneity and attempt to identify the drivers of therapeutically relevant subgroups of triple-negative and basal-like breast cancers are warranted.

A diagnosis of triple-negative disease has currently important implications for the choice of systemic therapies. Given the lack of an internationally accepted definition of basal-like breast cancer, it is not surprising that this diagnosis has no clinical implications — especially since a substantial portion of these cancers may be ER-positive or may overexpress HER2. It could be argued that instead of identifying descriptive and prognostic molecular subgroups (e.g., basal-like and claudin-low) within the triple-negative group, it would be more clinically relevant to identify those patients whose triple-negative tumors are sensi-

The New England Journal of Medicine

Downloaded from www.nejm.org on November 13, 2010. For personal use only. No other uses without permission.
Copyright © 2010 Massachusetts Medical Society. All rights reserved.
tive to specific chemotherapy agents (or combinations thereof) and targeted therapies. The expressions “triple-negative” and “basal-like” are essentially operational rather than diagnostic. In time, they will probably be replaced by other, more specific terminology.

Supported by grants from Susan G. Komen for the Cure (to Dr. Foulkes) and Breakthrough Breast Cancer (to Dr. Reis-Filho).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank Virginia Manning for help with an earlier version of Figure 2 and Britta Weigelt for her critical reading of an earlier version of the manuscript.

REFERENCES

Figure 2